

6/1 Place value in numbers to 10million

The position of the digit gives its size

<u>Example</u>

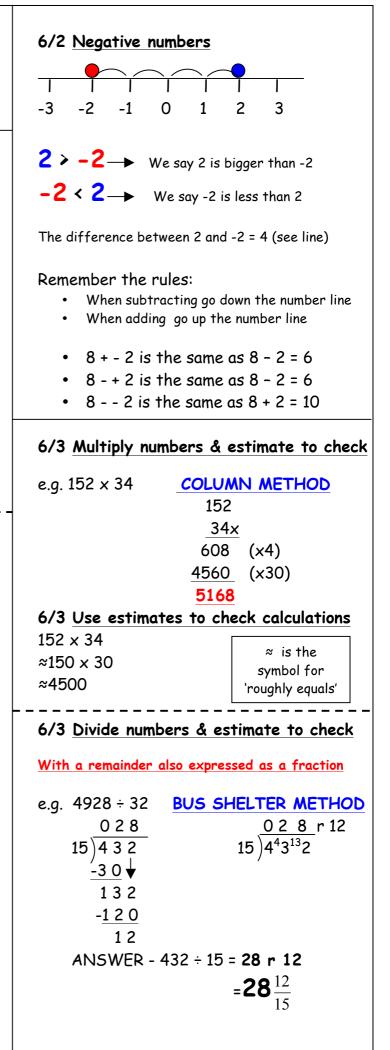
The value of the digit '1' is 10 000 000 The value of the digit '2' is 2 000 000 The value of the digit '3' is $300\ 000$ The value of the digit '4' is $40\ 000$

6/1 Round whole numbers

Example 1- Round 342 679 to the nearest 10 000 • Step 1 - Find the 'round-off digit' - 4

• Step 2 - Move one digit to the right - 2

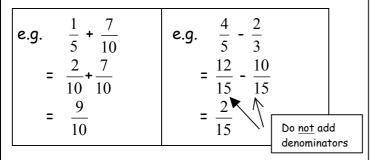
<u>4 or less</u>? YES – leave 'round off digit' unchanged - Replace following digits with zeros


ANSWER - 340 000

Example 2- Round 345 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

<u>5 or more</u>? YES – add one to 'round off digit' – Replace following digits with zeros


ANSWER - 350 000

6/3 continued With a remainder expressed as a decimal $15) \frac{028.8}{432.0} + 15) \frac{028.8}{4^{4}3^{13}2^{12}0} + \frac{30}{132} + \frac{120}{12} + \frac{110}{12} + \frac{100}{12} + \frac{100}{$	e.g. $3 + \frac{4 \times 6}{4 \times 3} - 5 = 22$ first (2+1) × 3 = 9 first 6/6 Addition • Line up the digits in the correct columns e.g. 48p + £2.84 + £9 0.48 2.84 9.00+ £1 <u>2.32</u> 11 1 6/6 Subtraction • Line up the digits in the correct columns e.g. 645 - 427 H T U $6^{3} \cancel{x}^{15}$ $\frac{4 \times 7}{2 \times 1}$ - $\frac{2}{2 \times 1}$ 8 6/7 Equivalent fraction Example: $\frac{27}{36}$ First find the highest common factor of the numerator and denominator - which is 9, then divi $\frac{27}{36}^{49} = \frac{3}{4}$ • To change fractions to the same denominator Example: $\frac{3}{4}$ and $\frac{2}{3}$ Find the lowest common multiple of the denominators - which is 12, then multiply: $2^{33} = 0$ and 2^{3}
·	Find the lowest common multiple of the
	denominators - which is 12, then multiply: $\frac{3}{4}_{x3}^{x3} = \frac{9}{12}$ and $\frac{2^{x4}}{3^{x4}} = \frac{8}{12}$

6/8 Add & subtract fractions

• Make the denominators the same

6/9 Multiply fractions

• Write 5 as
$$\frac{5}{1}$$

• Multiply numerators & denominators
e.g. $5 \times \frac{2}{3}$
 $= \frac{5}{1} \times \frac{2}{3}$
 $= \frac{10}{3} = 3\frac{1}{3}$
e.g. $\frac{4}{5} \times \frac{2}{3}$
 $= \frac{8}{15}$

6/9 Divide fractions

• Write 5 as
$$\frac{5}{1}$$

- Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g.
$$\frac{2}{3} \div 5$$
 e.g. $\frac{4}{5} \div \frac{2}{3}$

 = $\frac{3}{2} \times \frac{1}{5}$
 = $\frac{4}{5} \times \frac{3}{2}$

 = $\frac{3}{10}$
 = $\frac{12}{10}$ = $\mathbf{1}\frac{2}{10}$ = $\mathbf{1}\frac{1}{5}$

6/10 Multiply/divide decimals by 10, 100

thousands	hundreds	tens	units	•	tenths	hundredths	thousandths
4	3	5	2	•	6	1	7

• To <u>multiply</u> by 10, move each digit one place to the <u>left</u>

e.g. 35.6 x 10 = 356

Hundreds	Tens	Units	•	tenths
	3	_ 5	•	- 6
3	5 🖌	6 🖌	•	

• To <u>divide</u> by 10, move each digit one place to the <u>right</u>

e.g. 35.6 ÷ 10 = 356= 3.56

Tens	Units	•	tenths	hundredths
3 <	_ 5 _	•	6	
	3	•	5	6

- To <u>multiply</u> by 100, move each digit 2 places to the <u>left</u>
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>

AN ALTERNATE METHOD

Instead of moving the <u>digits</u> Move the <u>decimal point the opposite way</u>

6/11 <u>Multiply decimals</u>

Step 1 - remove the decimal point Step 2 - multiply the two numbers Step 3 - Put the decimal back in

Example:	0.	.06 x 8
	=>	6 x 8
	=>	48
	=> (0.48

6/11 Divide decimals

Use the bus shelter method Keep the decimal point in the same place Add zeros for remainders

 $\frac{\text{Example: } 6.28 \div 5}{1 \cdot 2 \cdot 5 \cdot 6}$ $5 \cdot \frac{1 \cdot 2 \cdot 5 \cdot 6}{1 \cdot 6 \cdot 6 \cdot 12^2 \cdot 8^3 \cdot 0}$

6/12 <u>Fraction, decimal, percentage</u> equivalents

LEARN THESE:

$$\frac{1}{4} = 0.25 = 25\%$$
$$\frac{1}{2} = 0.5 = 50\%$$
$$\frac{3}{4} = 0.75 = 75\%$$
$$\frac{1}{10} = 0.1 = 10\%$$

• Percentage to decimal to fraction $27\% = 0.27 = \frac{27}{100}$ $7\% = 0.07 = \frac{7}{100}$ $70\% = 0.7 = \frac{70}{100} = \frac{7}{10}$

• Decimal to percentage to fraction 0.3 = 30% = $\frac{3}{10}$ 0.03 = 3% = $\frac{3}{100}$ 0.39 = 39% = $\frac{39}{100}$

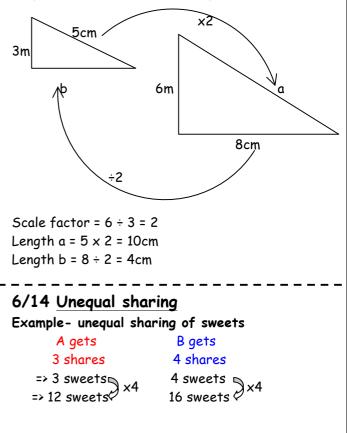
• Fraction to decimal to percentage

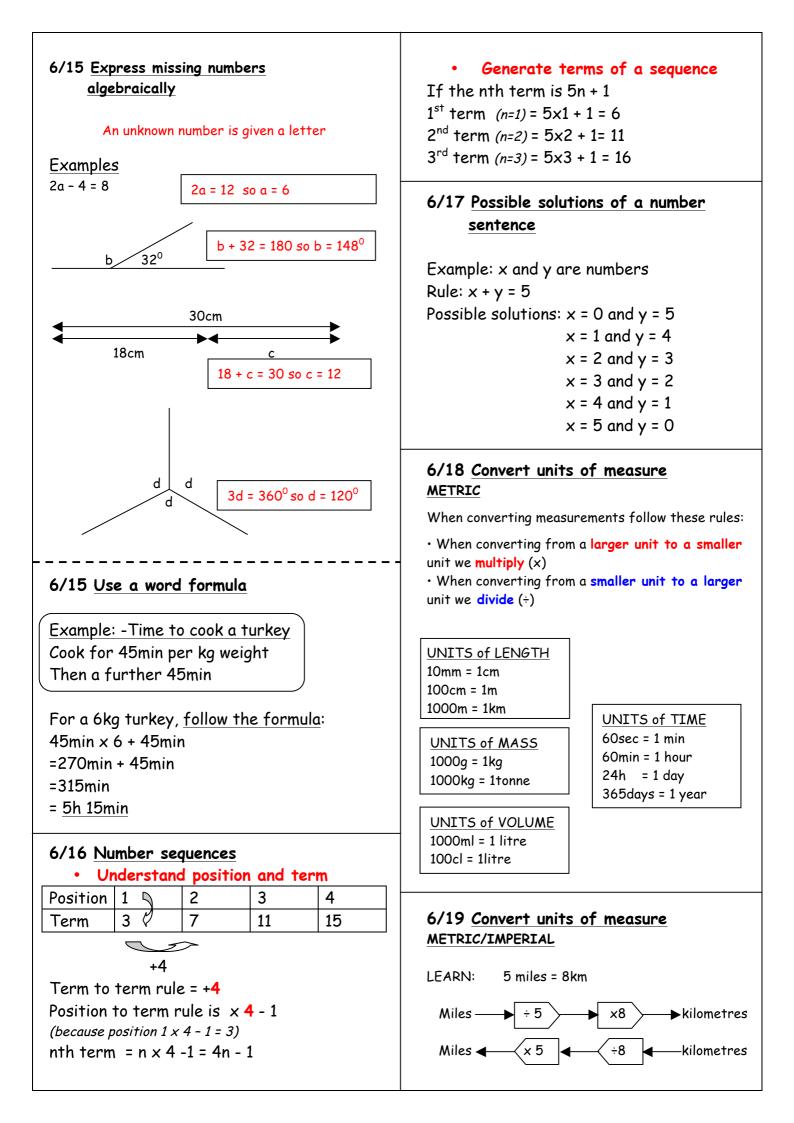
 $\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$ Change to 100

 $\frac{0.375}{\frac{3}{8}} = 3 \div 8 = 8) \overline{3.^{3}0^{6}0^{4}0} = 0.375 = 37.5\%$

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

Cancel by 3

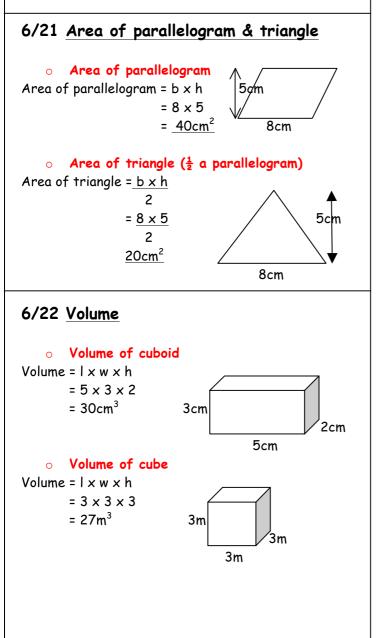

6/13 Fraction of quantity • <u>4</u> means ÷ 5 × 4 5 e.g. To find <u>4</u> of £40 5 £40 ÷ 5 × 4 = £40


6/13 <u>Percentage of quantity</u>

> 5% = £20 35% = £140

6/14 <u>Similar shapes</u>

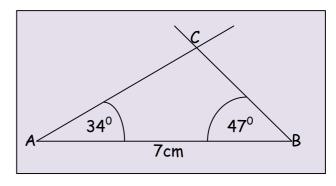
When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes


6/20 Perimeter and area of shapes

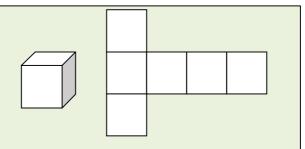
Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

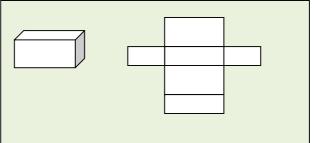
			В		
Α					
С					
				A	


Perimeter of each shape is different A – 12; B – 14; C –16

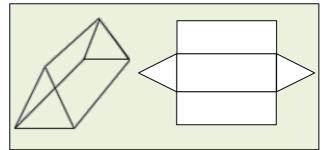
6/23 Construct 2D shapes

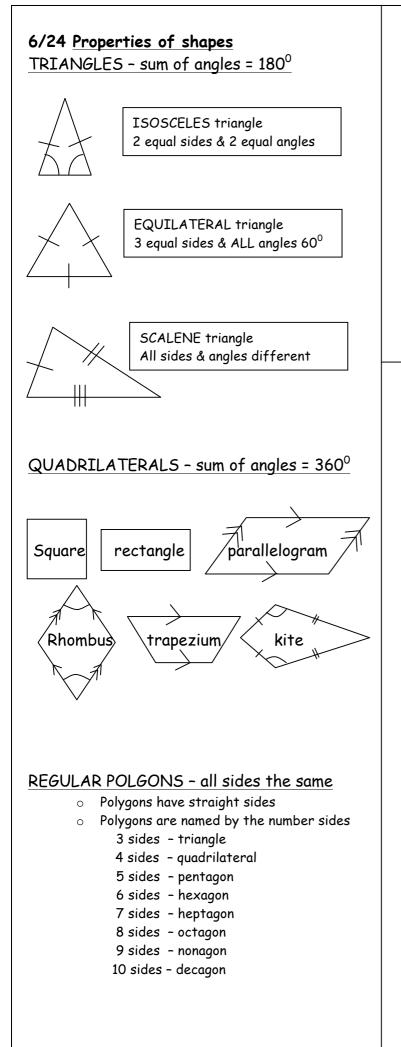

Example : Triangle with side and angles given

- Draw line AB = 7cm
- \circ Draw angle 34⁰ at point A from line AB
- \circ Draw angle 47⁰ at point B from line AB
- \circ $\;$ Extend to intersect the lines at C $\;$

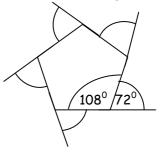


6/23 Construct 3D shapes


CUBE & its net

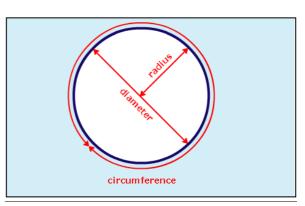


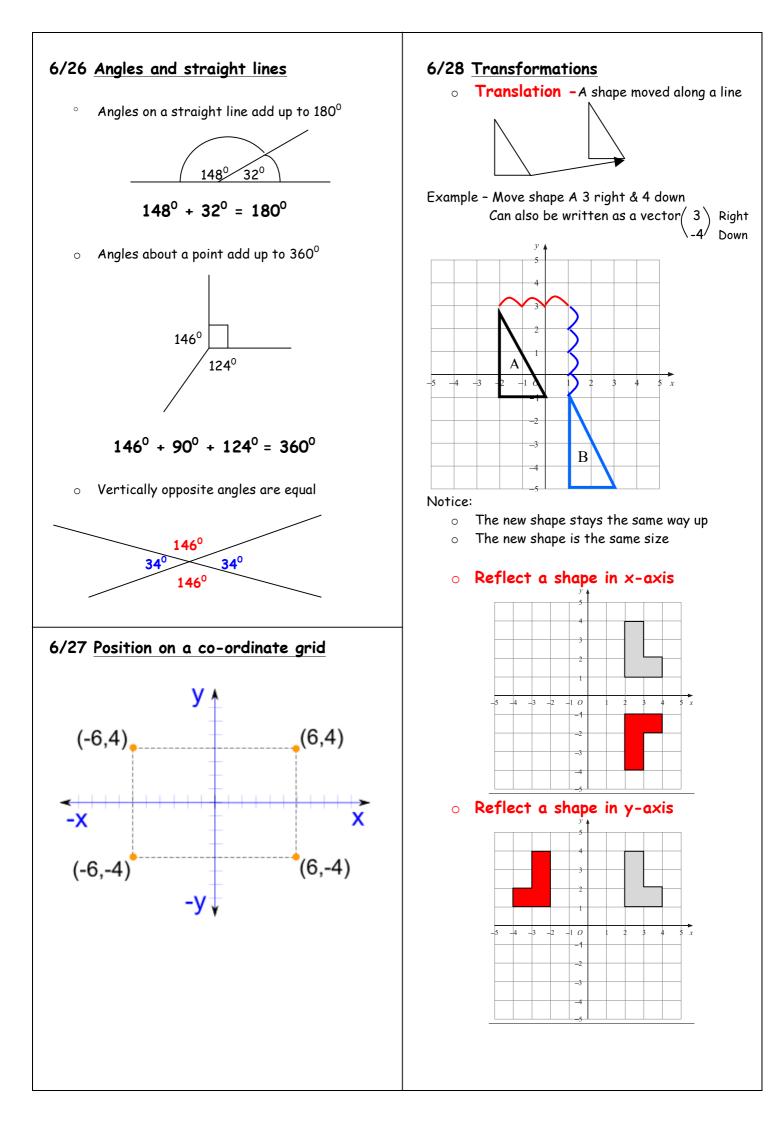
CUBOID & its net



TRIANGULAR PRISM & its net

• Sum of exterior angles is always 360°

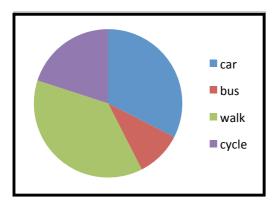

interior & exterior angle add up to 180°


 $\circ \quad \text{the interior angles add up to:} \\ \text{Triangle} \quad =1 \times 180^{\circ} = 180^{\circ} \\ \text{Quadrilateral} = 2 \times 180^{\circ} = 360^{\circ} \\ \text{Pentagon} \quad =3 \times 180^{\circ} = 540^{\circ} \\ \text{Hexagon} \quad =4 \times 180^{\circ} = 720^{\circ} \quad \text{etc} \\ \end{array}$

6/25 Parts of a circle

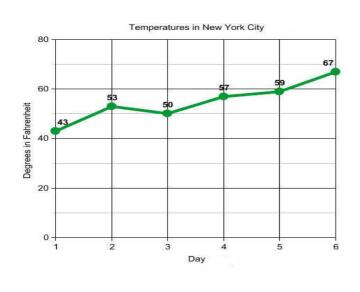
0

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. (d = 2 x r) or (r = $\frac{1}{2}$ x d)



6/29 Graphs

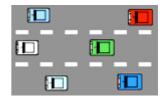
• Pie chart


Transport	Frequency	Angle
Car	13	13 × 9=117 ⁰
Bus	4	4 × 9=36 ⁰
Walk	15	15 x 9=135
Cycle	8	8 x 9=72
· ·		

Total frequency = $\stackrel{-}{40}$ 360° ÷ 40 = 9° per person

• Line graph

Line graphs show changes in a single variable – in this graph changes in temperature can be observed.


6/30 The mean

The mean is usually known as the average. The mean is not a value from the original list. It is a typical value of a set of data

Mean = total of measures ÷ no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

- Car 1 66mph Car 2 - 57mph Car 3 - 71mph
- Car 4 54mph
- Car 5 69mph Car 6 - 58mph

6

1

= 62.5mph

Mean average speed was 62.5mph